Osmotic stress response: quantification of cell maintenance and metabolic fluxes in a lysine-overproducing strain of Corynebacterium glutamicum.

نویسندگان

  • Cristian A Varela
  • Mauricio E Baez
  • Eduardo Agosin
چکیده

Osmotic stress diminishes cell productivity and may cause cell inactivation in industrial fermentations. The quantification of metabolic changes under such conditions is fundamental for understanding and describing microbial behavior during bioprocesses. We quantified the gradual changes that take place when a lysine-overproducing strain of Corynebacterium glutamicum is grown in continuous culture with saline gradients at different dilution rates. The use of compatible solutes depended on environmental conditions; certain osmolites predominated at different dilution rates and extracellular osmolalities. A metabolic flux analysis showed that at high dilution rates C. glutamicum redistributed its metabolic fluxes, favoring energy formation over growth. At low dilution rates, cell metabolism accelerated as the osmolality was steadily increased. Flexibility in the oxaloacetate node proved to be key for the energetic redistribution that occurred when cells were grown at high dilution rates. Substrate and ATP maintenance coefficients increased 30- and 5-fold, respectively, when the osmolality increased, which demonstrates that energy pool management is fundamental for sustaining viability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new genome-scale metabolic model of Corynebacterium glutamicum and its application

BACKGROUND Corynebacterium glutamicum is an important platform organism for industrial biotechnology to produce amino acids, organic acids, bioplastic monomers, and biofuels. The metabolic flexibility, broad substrate spectrum, and fermentative robustness of C. glutamicum make this organism an ideal cell factory to manufacture desired products. With increases in gene function, transport system,...

متن کامل

Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

BACKGROUND Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficie...

متن کامل

Fermentative Production of Lysine by Corynebacterium glutamicum from Different Carbon Sources

Production of lysine by Corynebacterium glutamicum (PTCC 1532) from different agricultural by-products (molasses and pulpy waste date) was compared to glucose as raw materials. For this purpose, ammonium sulphate was selected as a constant nitrogen source. The effect of different nitrogen sources was also investigated with glucose as a constant carbon source. The production of L-lysine was exam...

متن کامل

Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine

BACKGROUND The stabilizing and function-preserving effects of ectoines have attracted considerable biotechnological interest up to industrial scale processes for their production. These rely on the release of ectoines from high-salinity-cultivated microbial producer cells upon an osmotic down-shock in rather complex processor configurations. There is growing interest in uncoupling the productio...

متن کامل

In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome.

An in-depth analysis of the intracellular metabolite concentrations, metabolic fluxes, and gene expression (metabolome, fluxome, and transcriptome, respectively) of lysine-producing Corynebacterium glutamicum ATCC 13287 was performed at different stages of batch culture and revealed distinct phases of growth and lysine production. For this purpose, 13C flux analysis with gas chromatography-mass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 70 7  شماره 

صفحات  -

تاریخ انتشار 2004